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duct cross section in the Vz-plane changes from circular

to nearly rectangular in the region 1.0 < z/Dl < 2.5.

The duct aspect ratio (the ratio of the major to minor

axis lengths at z/DI >_ 2.5) is 3.0. The cross-sectional

areas at z/Dl < 1.0 and z/Dl >_ 2.5 are equal. In

the region 1.0 < z/Dl < 2.5 the cross-sectional area

increases as much as 1.15 times the area at z/Dl < 1.0.

Experiment

The inlet diameter of both the S-duct and tran-

sition duct was 10.24 cm. The S-duct is larger and

geometrically similar to the duct studied by Vakili et
a/. 2 The transition duct is identical to that of Davis

and Gessner. 4 The inlet conditions for both ducts are

summarized in Table 1. For the transition duct ex-

periment with swirling flow, the maximum swirl an-

gle was 15.6 °. A swirl generator was used to produce

solid body rotation with minimal downstream distur-

bances. Additional information about the experimental

programis contained in Refs. 7, 8.

Detailed measurements of velocity, total pres-

sure, and static pressure were made at cross-stream

planes inside both ducts with calibrated three- and

five-hole probes. Data were acquired at about 530

locations near the S-duct inlet (at s/Dl = -0.5)

and at nearly 1220 locations near the S-duct exit (at

s/D1 = 5.73). In the transition duct, measure-

ments were made in four cross-stream planes located

at x/D] = 1.49, 1.99, 2.55, and 3.93. The measure-

ments were acquired at approximately 480 locations in

each measurement plane. Surface oil film visualization

and surface static pressure measurements were also oh-
mined for both ducts.

Table 1 Experimental Inlet conditions.

S-duct Transition duct

No swirl Swirl

Mcenterline 0.60 0.50 0.35

Reo] × 10 -e 2.20 2.09 1.37

_o.9_/D1 × 100 3.04 3.76 10.24

Computation

The PARC3D computer program solves the full,

three-dimensional Reynolds-averaged Navier-Stokes

equations in strong conservation form with the Beam

and Warming approximate factorization algorithm. The

implicit scheme uses central differencing for a curvilin-
ear set of coordinates. Ref. 9 describes in detail the

theory and features of the PARC code.

A Baldwin-Lomax ]° algebraic turbulence model

was used. The model was modified to use only vorticity

in the local boundary layer to avoid secondary flow ef-

fects on the eddy viscosity, t] The turbulence model was

also modified for the swirling flow transition duct corn-

potation to remove the constant level of axial vorticity

from the vorficity level in the boundary layer. For the

S-duct computation a low-Reynolds number k - e tur-

bulence model of Speziale et al) 2 was also used. The

numerical solution algorithm is that of Nichols. ]3
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Fig. 3 Surface static pressure coefficient

for S-duct flow, (a) k - c turbulence

model, (b) algebraic turbulence model.

The S-duct grid was composed of three blocks with

grid distributions of 32 x 71 x 53, 69 x 71 x 53, and

32 x 71 x 53. An H-grid of 129 x 11 x 15 was used

in the center. Gridgen ]4 was used to define the interior

grid. The first point off the wall had an average y+ of

less than 1. The boundary conditions were no slip at

the walls, total pressure and temperature specified at the

entry plane, static pressure specified at the exit plane,

and symmetry about the zz-plane.

For nonswirling transition duct flow the grid mod-

eled one duct quadrant and contained 97 x 51 x 53

grid points. The inlet total temperature and pressure

were specified locally. At the duet exit, a constant static

pressure was specified and density and velocity were

extrapolated from the interior. The downstream static

pressure was adjusted to match the measured surface

static pressures at the inlet. The swirling flow transition

duct computation was performed with a 97 x 51 x 97

grid that modeled two duct quadrants. New boundary

conditions were incorporated in the PARC code to per-

mit swirling inlet flow and to accommodate the 180"

rotational symmetry of the flow. For the swirl case, the

inlet boundary condition used the experimentally mea-

sured inlet flow angles.
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Fig. 4 Skin friction coefficient for

S-duct flow, (a) k - ¢ turbulence

model, (b) algebraic turbulence model.
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_ Fig. 6 Law of the wall velocity profiles for

flow near S-duct exit, (a) k - e turbulence

moclel, (b) algebraic turbulence model.

separation is 2.02 _< s/Dl <_ 4.13. The k - ( and the

algebraic turbulence models predict separation between

2.59 <_ s/D1 < 4.25 and 2.69 < s/D1 <_ 4.25, re-

spectively. The clmputational values were determined
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are _ .,

presented as pressure coefficients given by Eq. (1). "_'_

The pressures Po and p represent the local total and (a) Experiment Computation
static pressure. The reference variables, subscripted cl

diameter upsla-eam of the S-duct or transition duct inlet '._'--.

(at s/D1 = -0.5 or z/D_ = -0.5). [ ::::: .... : , ,,,:,:::_',_

Cpo - I)o - P_,ll Cp = p- p_ll (l)
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Diffusing S-Duct Results

The computed and experimental surface static pres-

sure distributions are shown in Fig. 3. Both the alge-

braic and k - ( turbulence model results agree with the

experimental values upstream of the experimentally de-

termined separation (shaded region in Figs. 3 and 4). In

the separation zone, the k - • model agrees better with
experimental values, and downstream of separation both

models begin to agree with the experimental data. Pre-

dicted and experimental skin friction coefficient values

are plotted in Fig. 4. The agreement is considered rea-

sonable. The experimentally measured region of flow

........ [i'

(b) Experiment Computation

Fig. 7 Exlt plane transverse Mach vector

components for S-duct flow, (a) k - _ turbulence

model, (b) algebraic turbulence model.
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F_. 8 Near surface flow vi_uali_tlon,

(a) k - c turbulence model, (b) algebraic

turbulence model, (c) experiment.

fi'om locations of negative axial velocity at the grid point

nearest the wall along _b = 180*.

Computational and experimental total pressure con-

tours near the S-duct exit (s/D_ = 5.73) are compared

in Fig. 5. The predicted region of diminished total

pressure is smaller than the measured region for both

turbulence models. This discrepancy is possibly due to

a turbulence modeling deficiency to account for with

strong cross flow (three-dimensional) effects or a mod-

eling deficiency of artificial viscosity in the boundary

layer separation region. The grid resolution should be

adequate as the distance of the first grid point off the

wall is approximately _t+ of 1.

The predicted velocity profiles for both turbulence

models near the S-duct exit are shown in wall coordi-

nates in Fig. 6. Near the S-duct exit the vortices have

eonvected low velocity fluid away from the wall and the

boundary layer in this region, particularly at _b = 170",

departs significantly from this law.

Experimental and computed transverse velocity

vectors are shown in Fig. 7 near the duct exit. The re-

sults show the presence of large counter-rotating vortices

in the lower half of the cross section. Both computations

are in qualitative agreement with the experiment.

The predicted streamlines in the region of flow sep-

aration are compared with the surface oil film visualiza-

tion in Fig. 8. The predicted flow fields are in general

agreement with the data, and the k - c turbulence model

slxeamlines better compare to the experimental stream-

lines.

Circular-to-Rectangular Transition Duct Results

The numerical and experimental values of surface

static pressure for both the nonswirling and swirling flow

cases are plotted in Fig. 9. The prediction is very good

indicating that the aerodynamic blockage is correctly

predicted. Experimental and computed contours of the

total pressure coefficient at x/Dl = 2.55 are shown in

Fig. 10 (a) for flow without inlet swirl. The concentric

contours extending inward from the duct side walls are

regions of diminished total pressure that result from
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Fig. 9 Surface static pressure coefficient

for transition duct flow, (a) without

inlet swirl, (b) with Inlet swirl.

side wall vortices convecting low total pressure fluid

away from the duct surface. This is the most upstream

location where the effects of the side wall vortices are

noticeable in the experimental data. The numerical

results predict the same flow sla'ucture at r/DI = 2.55,

but the region of diminished total pressure is not as large

as the experimental results reveal.

Total pressure contours at x/D1 = 3.93, Fig. 10

(b), also show the predicted region of diminished total

pressure does not extend as far from the side walls as

was experimentally observed. Comparing experimen-

tal and numerical surface flow visualization indicates

that the point of formation of the vortices is correctly

predicted. This suggests that the turbulence model, re-

stricted to wall bounded shear flow, can not account for

turbulent mixing in the vortex region. The agreement

outside the region affected by the side wall vortices at

z/D1 = 2.55 and 3.93 is excellent.

(_) Experiment

(b) Experiment Computation

Fig. 10 Total pressure coefficient for
transition duct flow without inlet swirl,

(a) at _/D1 ---- 2.55, (b) at z/D1 _- 3.93.

Computation



(a) Experiment Computation

(b) Experiment Computation

Fig. tl Total pressure coefficient for

transition duct flow with Inlet swirl, (a)

at z/Dl = 2.55, (b) at z/D1 : 3.93.

The total pressure at z/D1 = 2.55 and 3.93 for

flow with inlet swirl are shown in Figs. 11 (a) and (b).

With swirl the flow is symmetric with respect to 180 °

rotations about the x-axis. Regions of diminished total

pressure near the duct side walls (that were produced

in the nonswirling flow by the side wall vortices) are
absent. However, surface oil film visualization, Ref. 7,
indicates cross flow near the duct corners in the down-

stream region of the duct. The effect of the cross flow

on the total pressure coefficients is visible, particularly

in the upper left (experiment) and lower right (com-

putation) quadrant at z/D1 = 2.55. In general, the

agreement between the experiment and computation is

better for the swirling case (no side wall vortices) than

the nonswirling case (side wall vortices). This is most

apparent at x/D1 = 3.93 where the comparison in Fig.

11 (b) is noticeably better than Fig. 10 (b).

Conclusion

The PARC3D Navier-Stokes code has been used to

compute flow through a diffusing S-duct and a circular-
to-rectangular transition duct with and without inlet

swirl. The objective of these calculations was to assess

the ability of the PARC code to accurately predict flows

through propulsion system ducts. The S-duct computed

flow fields are generally in good agreement with the ex-

perimental data. However, both turbulence models un-

derpredict the length and angular extent of the boundary

layer separation, and the predicted separation occurs one

half s/D1 late. Neither algebraic nor k - _ turbulence

model adequately accounts for strong secondary flows
with separation. The transition duct flow field matched

the experimental total and surface static pressure coeffi-

cients well. The agreement appeared better for flow with

inlet swirl, where the pairs of counter-rotating vortices at

the duct exit were absent. For attached flow, PARC3D

has demonstrated reasonable accuracy. For flows with

strong cross flow and or with separated boundary layers,

the modeled turbulence and or artificial viscosity should
be improved.
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